The effect of mobile phone radiation on human health is a subject of interest and study worldwide, as a result of the enormous increase in mobile phone usage throughout the world. As of November 2011, there were more than 6 billion subscriptions worldwide. Mobile phones use electromagnetic radiation in the microwave range. Other digital wireless systems, such as data communication networks, produce similar radiation.
In 2011, International Agency for Research on Cancer (IARC) classified mobile phone radiation as Group 2B - possibly carcinogenic (not Group 2A - probably carcinogenic - nor the dangerous Group 1). That means that there "could be some risk" of carcinogenicity, so additional research into the long-term, heavy use of mobile phones needs to be conducted. The WHO added in June 2011 that "to date, no adverse health effects have been established as being caused by mobile phone use",a point they reiterated in October 2014. Some national radiation advisory authorities have recommended measures to minimize exposure to their citizens as a precautionary approach.
Many scientific studies have investigated possible health symptoms of mobile phone radiation. These studies are occasionally reviewed by some scientific committees to assess overall risks. A 2007 assessment published by the European Commission Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR) concludes that the three lines of evidence, viz. animal, in vitro, and epidemiological studies, indicate that "exposure to RF fields is unlikely to lead to an increase in cancer in humans".
Part of the radio waves emitted by a mobile telephone handset are absorbed by the body. The radio waves emitted by a GSM handset are typically below a watt. The maximum power output from a mobile phone is regulated by the mobile phone standard and by the regulatory agencies in each country. In most systems the cellphone and the base station check reception quality and signal strength and the power level is increased or decreased automatically, within a certain span, to accommodate different situations, such as inside or outside of buildings and vehicles. The rate at which energy is absorbed by the human body is measured by the Specific Absorption Rate (SAR), and its maximum levels for modern handsets have been set by governmental regulating agencies in many countries. In the USA, the Federal Communications Commission (FCC) has set a SAR limit of 1.6 W/kg, averaged over a volume of 1 gram of tissue, for the head. In Europe, the limit is 2 W/kg, averaged over a volume of 10 grams of tissue. SAR values are heavily dependent on the size of the averaging volume. Without information about the averaging volume used, comparisons between different measurements cannot be made. Thus, the European 10-gram ratings should be compared among themselves, and the American 1-gram ratings should only be compared among themselves. SAR data for specific mobile phones, along with other useful information, can be found directly on manufacturers' websites, as well as on third party web sites. It is worth noting that thermal radiation is not comparable to ionizing radiation in that it only increases the temperature in normal matter, it does not break molecular bonds or release electrons from their atoms.
Thermal effects
One well-understood effect of microwave radiation is dielectric heating, in which any dielectric material (such as living tissue) is heated by rotations of polar molecules induced by the electromagnetic field. In the case of a person using a cell phone, most of the heating effect will occur at the surface of the head, causing its temperature to increase by a fraction of a degree. In this case, the level of temperature increase is an order of magnitude less than that obtained during the exposure of the head to direct sunlight. The brain's blood circulation is capable of disposing of excess heat by increasing local blood flow. However, the cornea of the eye does not have this temperature regulation mechanism and exposure of 2–3 hours duration has been reported to produce cataracts in rabbits' eyes at SAR values from 100–140 W/kg, which produced lenticular temperatures of 41 °C. There were no cataracts detected in the eyes of monkeys exposed under similar conditions. Premature cataracts have not been linked with cell phone use, possibly because of the lower power output of mobile phones.
Non-thermal effects
The communications protocols used by mobile phones often result in low-frequency pulsing of the carrier signal. While the existence of effects due to the field is undisputable, whether these modulations are causing these effects or these are still of thermic nature is subject to debate.
Some researchers have argued that so-called "non-thermal effects" could be reinterpreted as a normal cellular response to an increase in temperature. The German biophysicist Roland Glaser, for example,[12] has argued that there are several thermoreceptor molecules in cells, and that they activate a cascade of second and third messenger systems, gene expression mechanisms and production of heat shock proteins in order to defend the cell against metabolic cell stress caused by heat. The increases in temperature that cause these changes are too small to be detected by studies such as REFLEX, which base their whole argument on the apparent stability of thermal equilibrium in their cell cultures.
Other researchers believe the stress proteins are unrelated to thermal effects, since they occur for both extremely low frequencies (ELF) and radio frequencies (RF), which have very different energy levels. Another preliminary study published in 2011 by The Journal of the American Medical Association conducted using fluorodeoxyglucose injections and positron emission tomography concluded that exposure to radiofrequency signal waves within parts of the brain closest to the cell phone antenna resulted in increased levels of glucose metabolism, but the clinical significance of this finding is unknown.
Blood–brain barrier effects
Swedish researchers from Lund University (Salford, Brun, Persson, Eberhardt, and Malmgren) have studied the effects of microwave radiation on the rat brain. They found a leakage of albumin into the brain via a permeated blood–brain barrier.This confirms earlier work on the blood–brain barrier by Allan Frey, Oscar and Hawkins, and Albert and Kerns. Other groups have not confirmed these findings in vitro cell studies or whole animal studies,
Prof Leszczynski of Finland's radiation and nuclear safety authority found that, at the maximum legal limit for mobile radiation, one protein in particular, HSP 27, was affected. HSP 27 played a critical role in the integrity of the blood-brain barrier.
In 2006, a large Danish group's study about the connection between mobile phone use and cancer incidence was published. It followed over 420,000 Danish citizens for 20 years and showed no increased risk of cancer. A 2011 follow-up confirmed these findings.
The following studies of long time exposure have been published:
The 13 nation INTERPHONE project – the largest study of its kind ever undertaken – was published in 2010 and did not find a solid link between mobile phones and brain tumours.
The International Journal of Epidemiology published a combined data analysis from INTERPHONE, a multi national population-based case-control study of glioma and meningioma, the most common types of brain tumour.
The authors reported the following conclusion:
Overall, no increase in risk of glioma or meningioma was observed with use of mobile phones. There were suggestions of an increased risk of glioma at the highest exposure levels, but biases and error prevent a causal interpretation. The possible effects of long-term heavy use of mobile phones require further investigation.
In the press release accompanying the release of the paper, Dr. Christopher Wild, Director of the International Agency for Research on Cancer (IARC) said:
An increased risk of brain cancer is not established from the data from Interphone. However, observations at the highest level of cumulative call time and the changing patterns of mobile phone use since the period studied by Interphone, particularly in young people, mean that further investigation of mobile phone use and brain cancer risk is merited.
A number of independent health and government authorities have commented on this important study including The Australian Centre for Radiofrequency Bioeffects Research (ACRBR) which said in a statement that:
Until now there have been concerns that mobile phones were causing increases in brain tumours. Interphone is both large and rigorous enough to address this claim, and it has not provided any convincing scientific evidence of an association between mobile phone use and the development of glioma or meningioma. While the study demonstrates some weak evidence of an association with the highest tenth of cumulative call time (but only in those who started mobile phone use most recently), the authors conclude that biases and errors limit the strength of any conclusions in this group. It now seems clear that if there was an effect of mobile phone use on brain tumour risks in adults, this is likely to be too small to be detectable by even a large multinational study of the size of Interphone.
The Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) which said in a statement that:
On the basis of current understanding of the relationship between brain cancer and use of mobile phones, including the recently published data from the INTERPHONE study, ARPANSA:
concludes that currently available data do not warrant any general recommendation to limit use of mobile phones in the adult population,
continues to inform those concerned about potential health effects that they may limit their exposure by reducing call time, by making calls where reception is good, by using hands-free devices or speaker options, or by texting; and
recommends that, due to the lack of any data relating to children and long term use of mobile phones, parents encourage their children to limit their exposure by reducing call time, by making calls where reception is good, by using hands-free devices or speaker options, or by texting.
The Cancer Council Australia said in a statement that it cautiously welcomed the results of the largest international study to date into mobile phone use, which has found no evidence that normal use of mobile phones, for a period up to 12 years, can cause brain cancer.
Chief Executive Officer, Professor Ian Olver, said findings from the Interphone study, conducted across 13 countries including Australia, were consistent with other research that had failed to find a link between mobile phones and cancer.
This supports previous research showing mobile phones don’t damage cell DNA, meaning they can’t cause the type of genetic mutations that develop into cancer,” Professor Olver said.
However, it has been suggested that electromagnetic fields associated with mobile phones may play a role in speeding up the development of an existing cancer. The Interphone study found no evidence to support this theory.
A Danish study (2004) that took place over 10 years found no evidence to support a link. However, this study has been criticized for collecting data from subscriptions and not necessarily from actual users. It is known that some subscribers do not use the phones themselves but provide them for family members to use. That this happens is supported by the observation that only 61% of a small sample of the subscribers reported use of mobile phones when responding to a questionnaire.
A Swedish study (2005) that draws the conclusion that "the data do not support the hypothesis that mobile phone use is related to an increased risk of glioma or meningioma."
A British study (2005) that draws the conclusion that "The study suggests that there is no substantial risk of acoustic neuroma in the first decade after starting mobile phone use. However, an increase in risk after longer term use or after a longer lag period could not be ruled out."
A German study (2006) that states "In conclusion, no overall increased risk of glioma or meningioma was observed among these cellular phone users; however, for long-term cellular phone users, results need to be confirmed before firm conclusions can be drawn."
A joint study conducted in northern Europe that draws the conclusion that "Although our results overall do not indicate an increased risk of glioma in relation to mobile phone use, the possible risk in the most heavily exposed part of the brain with long-term use needs to be explored further before firm conclusions can be drawn."
Other studies on cancer and mobile phones are:
A Swedish scientific team at the Karolinska Institute conducted an epidemiological study (2004) that suggested that regular use of a mobile phone over a decade or more was associated with an increased risk of acoustic neuroma, a type of benign brain tumor. The increase was not noted in those who had used phones for fewer than 10 years.
The INTERPHONE study group from Japan published the results of a study of brain tumour risk and mobile phone use. They used a new approach: determining the SAR inside a tumour by calculating the radio frequency field absorption in the exact tumour location. Cases examined included glioma, meningioma, and pituitary adenoma. They reported that the overall odds ratio (OR) was not increased and that there was no significant trend towards an increasing OR in relation to exposure, as measured by SAR.
In 2007, Dr. Lennart Hardell, from Örebro University in Sweden, reviewed published epidemiological papers (2 cohort studies and 16 case-control studies) and found that:
Cell phone users had an increased risk of malignant gliomas.
Link between cell phone use and a higher rate of acoustic neuromas.
Tumors are more likely to occur on the side of the head that the cell handset is used.
One hour of cell phone use per day significantly increases tumor risk after ten years or more.
In a February 2008 update on the status of the INTERPHONE study IARC stated that the long-term findings ‘…could either be causal or artifactual, related to differential recall between cases and controls.’
Another area of concern is the radiation emitted by the fixed infrastructure used in mobile telephony, such as base stations and their antennas, which provide the link to and from mobile phones. This is because, in contrast to mobile handsets, it is emitted continuously and is more powerful at close quarters. On the other hand, field intensities drop rapidly with distance away from the base of transmitters because of the attenuation of power with the square of distance.
One popular design of mobile phone antenna is the sector antenna, whose coverage is 120 degrees horizontally and about ∓5 degrees from the vertical.
Because base stations operate at less than 100 watts and the antenna is raised up well above ground, the radiation at ground level is much weaker than a cell phone due to the power relationship appropriate for that design of antenna. Base station emissions must comply with safety guidelines (see Safety standards and licensing below). Some countries, however (such as South Africa, for example), have no health regulations governing the placement of base stations.
Several surveys have found a variety of self-reported symptoms for people who live close to base stations. However, there are significant challenges in conducting studies of populations near base stations, especially in assessment of individual exposure. Self-report studies can also be vulnerable to the nocebo effect.
Two double-blind placebo-controlled trials conducted at the University of Essex and another in Switzerland[89] concluded that mobile phone masts were unlikely to be causing these short-term effects in a group of volunteers who complained of such symptoms. The Essex study found that subjects were unable to tell whether they were being exposed to electromagnetic fields or not, and that sensitive subjects reported lower well-being independently of exposure. The principal investigator concluded "It is clear that sensitive individuals are suffering real symptoms and often have a poor quality of life. It is now important to determine what other factors could be causing these symptoms, so appropriate research studies and treatment strategies can be developed."
Experts consulted by France considered it was mandatory that the main antenna axis should not to be directly in front of a living place at a distance shorter than 100 metres. This recommendation was modified in 2003to say that antennas located within a 100-metre radius of primary schools or childcare facilities should be better integrated into the cityscape and was not included in a 2005 expert report. The Agence française de sécurité sanitaire environnementale currently says that there is no demonstrated short-term effect of electromagnetic fields on health, but that there are open questions for long-term effects, and that it's easy to reduce exposure via technological improvements.[
A lot of the damage is caused by the disruption micro tubular connections that allow biophotons to communicate between cells, Cell Phone Radiation Protection
ReplyDelete