Thursday 7 January 2016

Importance of The pineal gland.

The pineal gland, also known as the pineal body, conarium or epiphysis cerebri, is a small endocrine gland in the vertebrate brain. It produces melatonin, a serotonin derived hormone, which affects the modulation of sleep patterns in both seasonal and circadian rhythms. Its shape resembles a tiny pine cone (hence its name), and it is located in the epithalamus, near the center of the brain, between the two hemispheres, tucked in a groove where the two halves of the thalamus join.

Nearly all vertebrate species possess a pineal gland. The most important exception is the hagfish, which is often thought of as the most primitive extant vertebrate. Even in the hagfish, however, there may be a "pineal equivalent" structure in the dorsal diencephalon.The lancelet Branchiostoma lanceolatum, the nearest existing relative to vertebrates, also lacks a recognizable pineal gland.The lamprey (considered almost as primitive as the hagfish), however, does possess one.A few more developed vertebrates, including the alligator, lack pineal glands because they have been lost over the course of evolution.

The results of various scientific research in evolutionary biology, comparative neuroanatomy and neurophysiology, have explained the phylogeny of the pineal gland in different vertebrate species. From the point of view of biological evolution, the pineal gland represents a kind of atrophied photoreceptor. In the epithalamus of some species of amphibians and reptiles, it is linked to a vestigial organ, known as the parietal eye which is also called the third eye.

René Descartes believed the pineal gland to be the "principal seat of the soul" (a mystical concept). Academic philosophy among his contemporaries considered the pineal gland as a neuroanatomical structure without special metaphysical qualities; science studied it as one endocrine gland among many. However, the pineal gland continued to have an exalted status in the realm of pseudoscience.

Melatonin is N-acetyl-5-methoxy-tryptamine, a derivative of the amino acid tryptophan, which also has other functions in the central nervous system. The production of melatonin by the pineal gland is stimulated by darkness and inhibited by light. Photosensitive cells in the retina detect light and directly signal the suprachiasmatic nucleus (SCN), entraining its rhythm to the 24-hour cycle in nature. Fibers project from the SCN to the paraventricular nuclei (PVN), which relay the circadian signals to the spinal cord and out via the sympathetic system to superior cervical ganglia (SCG), and from there into the pineal gland.

The compound pinoline is also produced in the pineal gland; it is one of the beta-carbolines.

Regulation of the pituitary gland
Studies on rodents suggest that the pineal gland influences the pituitary gland's secretion of the sex hormones follicle-stimulating hormone (FSH), and luteinizing hormone (LH). In a study by Motta, Fraschini, and Martini (1967), a pinealectomy was performed on rodents. No change in pituitary weight was observed, however there was an increase in the concentration of FSH and LH within the gland. In this same study, administration of melatonin did not return the concentrations of FSH to normal levels, suggesting that the pineal gland influences the pituitary glands secretion of FSH and LH through some other transmitting molecule.

Drug metabolism
Studies on rodents suggest that the pineal gland may influence the actions of recreational drugs, such as cocaine, and antidepressants, such as fluoxetine (Prozac), and that its hormone melatonin can protect against neurodegeneration.

No comments:

Post a Comment