Saturday 21 May 2016

What is a Habitat ?

A habitat is an ecological or environmental area that is inhabited by a particular species of animal, plant, or other type of organism. The term typically refers to the zone in which the organism lives and where it can find food, shelter, protection and mates for reproduction, utilizing the qualities the species has adapted to survive within the ecology of the habitat. It is the natural environment in which an organism lives, or the physical environment that surrounds a species population.

A habitat is made up of physical factors such as soil, moisture, range of temperature, and availability of light as well as biotic factors such as the availability of food and the presence of predators. A habitat is not necessarily a geographic area—for a parasitic organism it is the body of its host, part of the host's body such as the digestive tract, or a cell within the host's body. The word "habitat" has been in use since about 1755 and derives from the Latin 3rd person singular present indicative of habitāre, to inhabit, from habēre, to have or to hold. Habitat can be defined as the natural environment of an organism, the place in which it is natural for it to live and grow.
The chief environmental factors affecting the distribution of living organisms are temperature, humidity, climate, soil type and light intensity, and the presence or absence of all the requirements that the organism needs to sustain it. Generally speaking, animal communities are reliant on specific types of plant communities.

Some plants and animals are generalists, and their habitat requirements are met in a wide range of locations. The small white butterfly (Pieris rapae) for example is found on all the continents of the world with the exception of Antarctica. Its larvae feed on a wide range of Brassicas and various other plant species, and it thrives in any open location with diverse plant associations.The large blue butterfly is much more specific in its requirements; it is found only in chalk grassland areas, its larvae feed on Thymus species and because of complex lifecycle requirements, it inhabits only areas in which Myrmica ants live.

A desert is not the kind of habitat that favours the presence of amphibians, with their requirement for water to keep their skins moist and for the development of their young. Nevertheless, some frogs live in deserts, creating moist habitats underground and hibernating while conditions are adverse. Couch's spadefoot toad (Scaphiopus couchii) emerges from its burrow when a downpour occurs and lays its eggs in the transient pools that form; the tadpoles develop with great rapidity, sometimes in as little as nine days, undergo metamorphosis, and feed voraciously before digging a burrow of their own.

Other organisms cope with the drying up of their aqueous habitat in other ways. Vernal pools are ephemeral ponds that form in the rainy season and dry up afterwards. They have their specially-adapted characteristic flora, mainly consisting of annuals, the seeds of which survive the drought, but also some uniquely adapted perennials. Animals adapted to these extreme habitats also exist; fairy shrimps can lay "winter eggs" which are resistant to dessication, sometimes being blown about with the dust, ending up in new depressions in the ground. These can survive in a dormant state for as long as fifteen years. Some killifish behave in a similar way; their eggs hatch and the juvenile fish grow with great rapidity when the conditions are right, but the whole population of fish may end up as eggs in diapause in the dried up mud that was once a pond.
Although the vast majority of life on Earth lives in mesophyllic (moderate) environments, a few organisms, most of them microbes, have managed to colonise extreme environments that are unsuitable for most higher life forms. There are bacteria, for example, living in Lake Whillans, half a mile below the ice of Antarctica; in the absence of sunlight, they must rely on organic material from elsewhere, perhaps decaying matter from glacier melt water or minerals from the underlying rock.Other bacteria can be found in abundance in the Mariana Trench, the deepest place in the ocean and on Earth; marine snow drifts down from the surface layers of the sea and accumulates in this undersea valley, providing nourishment for an extensive community of bacteria.

Other microbes live in habitats lacking in oxygen, and are dependent on chemical reactions other than photosynthesis. Boreholes drilled 300 m (1,000 ft) into the rocky seabed have found microbial communities apparently based on the products of reactions between water and the constituents of rocks. These communities have been little studied, but may be an important part of the global carbon cycle.Rock in mines two miles deep also harbour microbes; these live on minute traces of hydrogen produced in slow oxidizing reactions inside the rock. These metabolic reactions allow life to exist in places with no oxygen or light, an environment that had previously been thought to be devoid of life.

The intertidal zone and the photic zone in the oceans are relatively familiar habitats. However the vast bulk of the ocean is much less hospitable to air-breathing humans. The lower limit for photosynthesis is 100 to 200 m (330 to 660 ft) and below that depth the prevailing conditions include total darkness, high pressure, little oxygen (in some places), scarce food resources and extreme cold. This habitat is very challenging to research, and as well as being little studied, it is vast, with 79% of the Earth's biosphere being at depths greater than 1,000 m (3,300 ft). With no plant life, the animals in this zone are either detritivores, reliant on food drifting down from surface layers, or they are predators, feeding on each other. Some organisms are pelagic, swimming or drifting in mid-ocean, while others are benthic, living on or near the seabed. Their growth rates and metabolisms tend to be slow, their eyes may be very large to detect what little illumination there is, or they may be blind and rely on other sensory inputs. A number of deep sea creatures are bioluminescent; this serves a variety of functions including predation, protection and social recognition. In general, the bodies of animals living at great depths are adapted to high pressure environments by having pressure-resistant biomolecules and small organic molecules present in their cells know as piezolytes, which give the proteins the flexibility they need. There are also unsaturated fats in their membranes which prevent them from solidifying at cold temperatures.

Hydrothermal vents were first discovered in the ocean depths in 1977. They result from seawater becoming heated after seeping through cracks to places where hot magma is close to the seabed. The under-water hot springs may gush forth at temperatures of over 340 °C (640 °F) and support unique communities of organisms in their immediate vicinity. The basis for this teeming life is chemosynthesis, a process by which microbes convert such substances as hydrogen sulfide or ammonia into organic molecules. These bacteria and Archaea are the primary producers in these ecosystems and support a diverse array of life. About 350 species of organism, dominated by molluscs, polychaete worms and crustaceans, had been discovered around hydrothermal vents by the end of the twentieth century, most of them being new to science and endemic to these habitats.

Besides providing locomotion opportunities for winged animals and a conduit for the dispersal of pollen grains, spores and seeds, the atmosphere can be considered to be a habitat in its own right. There are metabolically active microbes present that actively reproduce and spend their whole existence airborne, with hundreds of thousands of individual organisms estimated to be present in a cubic metre of air. The airborne microbial community may be as diverse as that found in soil or other terrestrial environments, however these organisms are not evenly distributed, their densities varying spatially with altitude and environmental conditions. Aerobiology has been little studied, but there is evidence of nitrogen fixation in clouds, and less clear evidence of carbon cycling, both facilitated by microbial activity.

No comments:

Post a Comment